3,160 research outputs found

    Branching: the Essence of Constraint Solving

    Full text link
    This paper focuses on the branching process for solving any constraint satisfaction problem (CSP). A parametrised schema is proposed that (with suitable instantiations of the parameters) can solve CSP's on both finite and infinite domains. The paper presents a formal specification of the schema and a statement of a number of interesting properties that, subject to certain conditions, are satisfied by any instances of the schema. It is also shown that the operational procedures of many constraint systems including cooperative systems) satisfy these conditions. Moreover, the schema is also used to solve the same CSP in different ways by means of different instantiations of its parameters.Comment: 18 pages, 2 figures, Proceedings ERCIM Workshop on Constraints (Prague, June 2001

    The Parma Polyhedra Library: Toward a Complete Set of Numerical Abstractions for the Analysis and Verification of Hardware and Software Systems

    Get PDF
    Since its inception as a student project in 2001, initially just for the handling (as the name implies) of convex polyhedra, the Parma Polyhedra Library has been continuously improved and extended by joining scrupulous research on the theoretical foundations of (possibly non-convex) numerical abstractions to a total adherence to the best available practices in software development. Even though it is still not fully mature and functionally complete, the Parma Polyhedra Library already offers a combination of functionality, reliability, usability and performance that is not matched by similar, freely available libraries. In this paper, we present the main features of the current version of the library, emphasizing those that distinguish it from other similar libraries and those that are important for applications in the field of analysis and verification of hardware and software systems.Comment: 38 pages, 2 figures, 3 listings, 3 table

    An Improved Tight Closure Algorithm for Integer Octagonal Constraints

    Full text link
    Integer octagonal constraints (a.k.a. ``Unit Two Variables Per Inequality'' or ``UTVPI integer constraints'') constitute an interesting class of constraints for the representation and solution of integer problems in the fields of constraint programming and formal analysis and verification of software and hardware systems, since they couple algorithms having polynomial complexity with a relatively good expressive power. The main algorithms required for the manipulation of such constraints are the satisfiability check and the computation of the inferential closure of a set of constraints. The latter is called `tight' closure to mark the difference with the (incomplete) closure algorithm that does not exploit the integrality of the variables. In this paper we present and fully justify an O(n^3) algorithm to compute the tight closure of a set of UTVPI integer constraints.Comment: 15 pages, 2 figure

    Applications of Polyhedral Computations to the Analysis and Verification of Hardware and Software Systems

    Get PDF
    Convex polyhedra are the basis for several abstractions used in static analysis and computer-aided verification of complex and sometimes mission critical systems. For such applications, the identification of an appropriate complexity-precision trade-off is a particularly acute problem, so that the availability of a wide spectrum of alternative solutions is mandatory. We survey the range of applications of polyhedral computations in this area; give an overview of the different classes of polyhedra that may be adopted; outline the main polyhedral operations required by automatic analyzers and verifiers; and look at some possible combinations of polyhedra with other numerical abstractions that have the potential to improve the precision of the analysis. Areas where further theoretical investigations can result in important contributions are highlighted.Comment: 51 pages, 11 figure
    • …
    corecore